1: How to avoid "communication failure" messages when using the CPU 315F and ET 200S?
With the CPU S7 315F, ET 200S and fail-safe DI/DO modules, you will call the fail-safe program of OB35. Also, you have accepted the default settings for all monitoring times and are willing to receive a "communication failure" message. The OB 35 is set to 100 milliseconds by default. You have set the F/monitor time of the FI/O module to 100 milliseconds, so the I/O module is addressed at least once every 100 milliseconds. However, since OB 35 is called every 100 milliseconds, a communication failure occurs. To ensure that the OB35 scan interval and F monitoring time are different, please ensure that the F monitoring time is greater than the OB35 scan interval.
This problem can occur with the S7 distributed safety system up to V5.2 SP1 and 6ES7138-4FA00-0AB0, 6 ES7138-4FB00-0AB0, 6ES7138-4CF00-0AB0. In the new module, the F monitoring time is set to 150 milliseconds.
2: What is the monitoring time of the S7-300 CPU on the PROFIBUS when the DP slave is not available?
When operating a PROFIBUS network with a DP slave on the PROFIBUS interface of the CPU, you want to check whether the desired configuration matches the actual configuration during startup. Two different times are given on the Startup tab in the CPU Properties dialog.
3: How to judge the power or buffer error, such as: battery failure?
If an error occurs in the power supply (S7-400 only) or in the buffer, the CPU operating system accesses OB81. After the error is corrected, revisit OB81. In the event of a battery failure, the S7-400 only accesses OB81 if the BATT.INDIC switch in the battery test is active. If OB81 is not configured, the CPU does not enter the operating state STOP. If OB81 is not available, the CPU will remain running when there is a power failure.
4: What should you watch out for when assigning addresses to I/O modules (centralized or distributed) on the S7CPU?
Please note that the created data area (eg a double word) cannot be configured on the boundary of the process image, since only the area below the boundary can be read into the process image in this data block, so it is not possible to access from the process image. data. Therefore, these configuration rules do not support this situation: for example, configuring an input double word on address 254 of a process image of a 256-byte input. If this is necessary, the size of the process image must be adjusted accordingly (in the Properties of the CPU).
5: How to perform basic communication of global data in S7 CPU? What should I pay attention to when communicating?
Global data communication is used to exchange small-capacity data. Global data (GD) can be:
The data timer and counter function data exchange in the input and output tag data blocks refers to the exchange of data in the form of data packets between CPUs connected to the one-way or two-way GD ring. The GD ring is identified by the GD ring number.
One-way connection: A CPU can send GD packets to multiple CPUs.
Two-way connection: connection between two CPUs: Each CPU can send and receive a GD packet.
It must be ensured that the receiving CPU does not acknowledge the receipt of global data. If you want to exchange data via the corresponding communication block (SFB, FB or FC), you must make a connection between the communication blocks. By defining a connection, the design of the communication block can be greatly simplified. This definition is valid for all called communication blocks and does not need to be redefined each time.
6: Can I use an S7-400 memory card for the CPU 318-2DP?
In normal operation, only the "short" memory card with order numbers 6ES7951-1K... (Flash EPROM) and 6ES7951-1A... (RAM) can be used.
7: Although the LED light is on, why is the CPU 31xC unable to read the full input from the default addresses 124 and 125?
For the following models of CPU, check if the 24V voltage is connected to pin 1. The LED is controlled by the input current. The 24V voltage on pin 1 requires further processing.
313C (6ES7 313-5BE0.-0AB0), 313C-2DP (6ES7 313-6CE0.-0AB0), 313C-2PTP (6ES7 313-6BE0.-0AB0), 314C-2DP (6ES7 314-6CF0.-0AB0), 314C-2PTP (6ES7 314-6BF0.-0AB0)
8: What should I do if the PROFINET interface occasionally has a communication error when configuring the PN interface of the CPU 31x-2 PN/DP?
Make sure that all components (conversions) in Ethernet (PROFINET) support 100 Mbit/s full-duplex basic operation. Avoid center splitting the network because these devices can only work in half-duplex mode.
9: What is the meaning of the “clock†correction factor in the hardware configuration editor?
In the hardware configuration, you can enter a correction factor in the "Clock" > field via CPU > Properties > Diagnostics/Clock. This correction factor only affects the hardware clock of the CPU. The time interrupt is derived from the system clock and has nothing to do with the hardware clock settings.
10: How to realize bidirectional data transmission between master and slave by function block with PROFIBUS DP?
In the master station plc, the data exchange with the slave can be done by calling SFC14 "DPRD_DAT" and SFC15 "DPWR_DAT", while for the slave, FC1 "DP_SEND" and FC2 "DP_RECV" can be called to complete the exchange of data.
11: What identification data can be read from the S7 CPU?
The following identification data can be read out via SFC 51 "RDSYSST":
The order number and CPU version number can be read. To do this, use SFC 51 and SSL ID 0111 and use the following indexes:
1 = module identification
6 = basic hardware identification
7 = basic firmware identification
12: How do you program the loadable communication blocks FB14 ("GET") and FB15 ("PUT") for data exchange on the S7-300 with CPU 317-2PN/DP?
In order to exchange data between two S7-300 stations using the CPU 317-2PN/DP via an S7 connection, the S7 connection is configured using NetPro. In S7 communication, the communication function block must be called. Module FB14 ("GET") is used to retrieve data from the remote CPU and module FB15 ("PUT") is used to write data to the remote CPU. The function blocks are included in the standard library of STEP 7 V5.3. <
Attributes of the communication modules FB14 ("GET") and FB15 ("PUT") of the CPU 317-2PN/DP:
FB14 and FB15 are asynchronous communication functions. The operation of these modules may span multiple OB1 cycles. Activate FB14 or FB15 with the input parameter REQ. DONE, NDR or ERROR indicates the end of the job. PUT and GET can communicate at the same time through the connection.
Note: The communication blocks in the library SIMATIC_NET_CP cannot be used for the CPU317-2PN/DP.
13: What should I pay attention to for the compact CPU 313C-2 PtP and CPU 314-2 PtP job synchronization processing?
In the user program, it is not possible to program both SEND jobs and FETCH jobs.
That is: As long as the SEND job (SFB 63) is not completely terminated (DONE or ERROR), the FETCH job (SFB 64) cannot be called (even when REQ=0). As long as the FETCH job (SFB 64) is not completely terminated (DONE or ERROR), the SEND job (SFB 63) cannot be called (even when REQ=0). When processing an active job (SEND job, SFB 63 or FETCH job, SFB 64), a passive job (SERVE job, SFB 65) can be processed at the same time.
14: Can be MICR. Does master420 to 440 operate as a configuration axis (location external detection) with the CPU 317T?
Yes, but in terms of power and accuracy, the requirements for configuring the axes are very different. In the case of high-speed, the servo drives SIMODRIVE 611U, MASTERDRIVES MC or SINAMICS S must be operated together with the CPU 317T. The MICROMASTER series also meets power and accuracy requirements at low requirements.
15: How do you configure direct data exchange (inter-node communication) between two CPU modules that have been configured as DP slaves?
The two CPU stations are configured as DP slaves and are operated by the same DP master. The communication between them can complete direct data exchange by configuring the switching mode to DX.
16: How do I communicate using SFC65, SFC66, SFC67 and SFC68?
For one-way basic communication, the system function SFC67 (X_GET) is used to read data from a passive station and the system function SFC68 (X_PUT) is used to write data to a passive station (server). These blocks are only called in the active station. For a two-way basic communication, the system function SFC65 (X_SEND) in the station is called in which you want to send data to another active station. In an active active receiving station, the data is recorded via the system function SFC66 (X_RCV).
In both types of basic communication, up to 76 bytes of user data can be processed per block call. For S7-300 CPUs, the data consistency for data transfer is 8 bytes, and for S7-400 CPUs it is full length. If connected to the S7-200, it must be taken into account that the S7-200 can only be used as a passive station.
17: What is a freely allocated I/O address?
The free allocation of addresses means that you can freely assign an address to each module (SM/FM/CP). The address assignment takes place in STEP 7. The starting address is defined first, and the other addresses of the module are referenced to it.
Advantages of freely assigning addresses: Since there is no address gap between modules, the available address space can be optimally used. When creating standard software, the configuration of the S7-300 involved can be disregarded during the assignment of the address.
18: What can the diagnostic buffer do?
Improve the availability of your system by identifying fault sources faster. Evaluate the last event before STOP and look for the cause of the STOP.
The diagnostic buffer is a circular buffer with a single diagnostic entry that is displayed in the sequence of events; the first entry shows the most recent event. If the buffer is full, the oldest event will be overwritten by the new entry. Depending on the CPU, the size of the diagnostic buffer is fixed or fixed, or it can be set via parameters in HW Config.
19: What are the entries in the diagnostic buffer?
1) Fault events
2) Operating mode transitions and other operational events important to the user
3) User-defined diagnostic events (with SFC52 WR_USMSG)
In the operating mode STOP, as few events as possible are stored in the diagnostic buffer so that the user can easily find the cause of the STOP in the buffer. Therefore, entries are stored in the diagnostic buffer only when the event requires the user to generate a response (such as scheduling a system memory reset, the battery needs to be recharged) or when important information (such as firmware update, station failure) must be registered.
20: How do you determine the size of the MMC to completely store the STEP 7 project?
In order to choose the right MMC for the project, you need to know the size of the entire project and the size of the block to be loaded. You can determine the size of your project as described below:
1) First archive the STEP 7 project. Then open the archived item in the Windows Explorer and determine its size (check the item and right click). This will tell you the size of the archive.
2) Load the block into the CPU. You still need to select "PLC > Module Information > Memory". Here, in "Load memory RAM + EPROM", you can see the size of the allocated load memory.
3) This value must be added to the size of the archived item that has been determined. This gives you the total amount of memory needed to save the entire project on an MMC.
21: Which settings will be retained after the CPU is fully reset?
When the CPU is reset, the memory is not completely deleted. The entire main memory is completely deleted, but the data loaded in the memory and the data stored on the Flash-EPROM memory card (MC) or micro memory card (MMC) are all retained. In addition to loading memory, timers (except CPU 312 IFM) and diagnostic buffers are also reserved. A CPU with an MPI interface or a combined MPI/DP interface retains the current address and baud rate used by the interface only before all resets. On the other hand, another PROFIBUS address is also completely deleted and can no longer be accessed.
Important: After resetting the PG/PC, communication with the CPU can only be established via the MPI or MPI/DP interface.
22: Why can't I access the CPU online via MPI?
If the MPI parameters have been changed on the CPU, check the hardware configuration. These values ​​can be compared to the parameters under "Set PG/PC interface" to see if there is any inconsistency.
Or you can do this: open a new project and create a new hardware configuration. Set the respective values ​​for the address and transfer speed in the properties of the MPI interface of the CPU. Write the "empty" item to the memory card. Insert the memory card into the CPU and then re-open the voltage of the CPU to transfer the settings on the memory card to the CPU. The current settings of the MPI interface have now been transferred, and as such, the connection can be established as long as the interface is not faulty. This method is suitable for all S7-CPUs with a memory card interface.
23: What is the purpose of the error OB?
If a described error occurs (see file 1), the corresponding OB will be called and processed. If the OB is not loaded, the CPU goes to STOP (exceptions: OB70, 72, 7 3 and 81)
The S7-CPU can recognize two types of errors:
1) Synchronization errors: These errors are triggered during the processing of a particular operation and can be attributed to a specific part of the user program.
2) Asynchronous errors: These errors cannot be directly attributed to a running program. These errors include errors in the priority class, errors in the automation system (faulty modules) or redundant errors.
24: Which "fault OBs" should be programmed in the DP slave or CPU315-2DP type master?
When configuring a CPU315-2DP station as a slave, the following OBs must be programmed in the STEP7 program in order to evaluate the error information of the distributed I/O type:
OB 82 diagnostic interrupt OB, OB 86 subrack failure OB, OB 122 I/O access error
1) Diagnostics OB82: If a module that supports diagnostics and has released a diagnostic interrupt has identified an error, it issues a diagnostic interrupt request to the CPU for both the incoming event and the outgoing event. The operating system then calls OB82. The local variable of OB82 contains the logical base address of the defective module and the diagnostic data of 4 bytes. If you have not programmed OB82 yet, the CPU enters the "Stop" mode. You can block or delay the diagnostic interrupt OB and re-release it via SFC 39 - 42.
2) Subrack failure OB86: If a DP master system is identified or a distributed I/O station is faulty (an event that is also an outgoing event for an incoming event), the operating system of the CPU calls OB 86. If OB 86 is not programmed but such an error occurs, the CPU enters the "Stop" mode. You can block or delay OB86 and re-release it via SFC 39 - 42.
3) I/O access error OB122: An error occurred while accessing the data of a module, the operating system of the CPU called OB 122. For example, if the CPU recognizes a read error while accessing data for a single module, the operating system calls OB 122. The OB 122 operates in the same priority class as the interrupt block. If OB 122 is not programmed, the CPU changes from "Run" mode to "Stop" mode.
25: Why is the reserved area rewritten in some cases?
In the hardware configuration of STEP 7, several operand areas can be defined as "reserved areas". This will preserve the contents of these areas even after the power is turned off, even if there is no backup battery. If a block is defined as a "reserved block" and it does not exist in the CPU or is only temporarily installed, some of these areas will be overwritten. After the power is turned on/off, other content will be found in the relevant area.
26: Why can't I load the contents of the flash card into the S7 300 CPU?
Your project is on a flash card. Now use it to load the S7 300. However, after the end of the load, it is found that the CPU's RAM is still empty. The reason for this problem is that there are unhandled, "wrong" organization blocks in your program (for example, OB86 does not have a DP interface). After resetting and restarting the CPU, the RAM is still empty. The diagnostic buffer will prompt for some information on this "unable to load" block.
27: When using the CPU315-2DP as a slave and the diagnostic address of the CPU315-2DP as a master When configuring a CPU315-2DP station, you use the S7 tool "H/W CONFIG" to assign the diagnostic address. If a fault occurs, these diagnostic addresses are added to the tag "OB82_MDL_ADDR" of the diagnostic OB. You can analyze this variable in OB82 to identify the faulty station and react accordingly.
Here's an example of how to assign a diagnostic address:
Step 1: Configure the slave with the CPU315-2DP and assign a diagnostic address, such as 422.
Step 2: Configure the master via CPU315-2DP Step 3: Link the configured slave to the master and assign a diagnostic address, such as 1022.
28: What settings do I need to make for the DP slave interface of the S7-300 CPU before I can use it for routing?
If you use the CPU as an I-Slave and the CPU also functions as an S7 router, please note the following:
The DP interface of the slave used for routing must be set to active. This can be done in HW Config: in the properties dialog of the DP interface, the option "Commissioning/Test operation" or "Programming, status/modify..." must be activated. Notes on these settings can be found in the table below.
For S7 routing connections, there are 4 available connection resources - independent of any other connection resources. There is no connection resource or S7 basic communication using PG/OP.
If a connection must be made via the DP interface to a communication partner located in its rack (as in the CP 343-1), a routing connection is also used. For a connection to a communication partner located in its rack via the MPI interface, no routing connection resources are used, since in this case, the partner can be reached directly. Note: This does not apply to CPU 318.
29: Why is there no return value when using the internal runtime schedule of the S7-300 CPU?
When the CPU 312IFM to 316-2DP parameterizes the system function blocks SFC2, SFC3 and SFC4, an identifier greater than "B#16#0" is specified for an operating schedule, then an error occurs and the required functions are not possible use. In this case, the identifier "8080h" will be output at the "RETVAL" output of the block.
Note: For these CPUs, only one timer is available. So you should only use the identifier "B#16#0". The system function SFC2 "SET_RTM" must not be called in a cycle block (OB1, OB35), but it should be called at the restart OB (OB100). You can also start the block with an external trigger. Otherwise, the block will always reset the running chronograph and never finish counting.
30: How are variables stored in temporary local data?
The L stack always starts with the address "0". In the L stack, the same number of bytes are reserved for each block of data as static or local data held by each block.
When a block terminates, its space is then re-released. The pointer always points to the first byte of the currently open block.
31: Is the running time counter reset after the CPU has been completely reset?
When using the S7-300, there is a difference between a hardware clock (built-in "real-time clock") and a CPU with a software clock. For CPUs that have a software clock without a backup battery, the runtime counter is deleted after the CPU is completely reset. For CPUs with hardware clocks with backup batteries, the last value of the runtime counter is retained after the CPU is fully reset. Similarly, the runtime values ​​of the CPU 318 and all S7-400 CPUs are retained after the CPU has been completely reset.
32: How do you configure an S7 CPU that is not in the same project as a DP slave of my S7 DP master module?
By default, only one S7 CPU can be configured as a slave in STEP 7, if the station is in the same project. The station then appears as "CPU 31x-2 DP" in the hardware catalog under "PROFIBUS-DP > Configured stations". In this way, you can set up a link between the DP master and the DP slave.
There is also an option to configure an S7 CPU that is not in the same project as the master as a slave. Do as follows:
The DP slave is configured as usual.
Download the GSD file of the S7-300 CPU to be used as a slave from the Internet. This file is located under the "PROFIBUS GSD file / SIMATIC" on the customer support website.
Open the SIMATIC Manager and hardware configuration.
Open "Options; Install new GSD..." and insert the GSD file you just downloaded into the hardware directory. (Note: there is no need to open any windows in HW Config during this process)
Update the hardware catalog with "Options; Update Catalog". <
You can now configure your DP master. The S7-300 CPU as a slave can be found under "PROFIBUS-DP > More Field Devices > SPS".
Note: If you are manually joining the DP slave, to ensure the bus parameters, the PROFIBUS address of the DP slave and its I/O configuration must be identical in both projects.
33: Is the effect of power failure the same as a full reset without a backup battery?
Different. When the CPU is completely reset, its hardware configuration information is deleted (except for the MPI address), the program is deleted, and the residual magnetic memory is also cleared.
The power is turned off without a backup battery and a memory card, and the hardware configuration information (except the MPI address) and the program are deleted. However, the residual magnetic memory is not affected. If the program is reloaded in this case, it works with the old value of the remanent memory. For example, these values ​​usually come from the first 8 counters. Failure to take this into account can lead to dangerous system conditions.
Recommendation: Always perform a full reset after a power outage without a backup battery and a memory card.
34: Is the 2-wire sensor connected to the analog input of the compact CPU?
Two-wire and 4-wire sensors can be connected to the analog input of the CPU 300C. When using a 2-wire sensor, set "I = Current" to the measurement type in the hardware configuration, the same as for the 4-wire sensor.
Note: Please note that the compact CPU only supports active sensors (4-wire sensors). If a passive sensor (2-sensor) is used, an external power supply must be used.
Warning: Please note the maximum input current allowed. 2-wire sensors may exceed the maximum allowable current in the event of a short circuit. The maximum allowable current specified in the technical data is 50 mA (breaking limit). For this situation (for example, a current limit on a 2-wire sensor or a PTC thermistor in series with the sensor), ensure adequate protection.
35: Can the SM322-1HH01 work with a load voltage of 24 V AC?
Yes, you can also use the SM322-1HH01 with a load voltage of 24 V AC.
36: What is the minimum load voltage and current required to ensure the SM322-1HF01 is turned on?
The SM322-1HF01 relay module requires 17 V and 8 mA to ensure proper opening and closing. For the life of the contacts, such values ​​are better than the values ​​of this module (10 V and 5 mA) provided in the manual. The values ​​specified in the manual should be considered as the minimum required value.
37: Which 24V digital input modules (6ES7 321-xBxxx- ...) need to be connected to the power supply?
Power pin connection (L+ / M) for 24V digital input module.
38: Can I use the SM321 module (DI16 x 24V) in the ET200M?
The module SM321 (MLFB 6ES7 321-7BH00-0AB0) can also be used in the ET200M. The CPU 31x-2DP acts as the DP master or the communication processor CP CP342-5 acts as the DP master. The module can also be connected to an S7-400 CPU via the ET200M and S7-400 communication processor CP443-5.
39: What is the address occupied by the SM323 digital card?
The SM323 module is available in 16-bit type (6ES7 323-1BL00-0AA0) and 8-bit type (6ES7 323-1BH00-0AA0). For 16-bit type modules, the inputs and outputs occupy two addresses "X" and "X+1". If the base address of SM323 is 4 (ie X=4; slot is 5), then the input is addressed under addresses 4 and 5, and the output address is also addressed under addresses 4 and 5. In the wiring view of the module, the input byte "X" is at the top of the left and the output byte "X" is at the top of the right.
For 8-bit type modules, the input and output each occupy one byte and they have the same byte address. If a fixed slot is used for addressing, SM323 is inserted into slot 4, then the input address is I 4.0 to I 4.7 and the output address is Q 4.0 to Q 4.7.
40: Can I replace SM321-1CH80 with SM321-1CH20 without changing the hardware configuration?
The technical parameters of the SM321-1CH20 and SM321-1CH80 modules are the same. The difference is that the SM321-1CH80 can only be applied to a wider range of environmental conditions. So you don't need to change the hardware configuration.
41: What must I pay attention to when making direct I/O access?
Note that in an S7-300 configuration, if you make a direct read access to the I/O across the module (using the command to read a few bytes at a time), an incorrect value is read. You can view the specific address through hardware.
42: Does the SM321 module need to be connected to the DC 24V?
No, if it is the SM 321 module with MLFB 6ES7 321-1BH02-0AA0, it is no longer necessary to connect DC 24V.
43: How do you plan the analog module SM374 in the STEP 7 hardware configuration? How do I find this module in the hardware catalog?
The analog module SM374 can be used in three modes: as a 16-channel digital input module, as a 16-channel digital output module, as a mixed digital input/output module with 8 inputs and 8 outputs.
Now configure the SM374 according to the module you need to simulate, that is to say;
If the SM 374 is used as a 16-channel input module, configure a 16-channel input module - recommended: SM 321: 6ES7321-1BH01-0AA0,
If the SM 374 is used as a 16-channel output module, configure a 16-channel output module - recommended: SM 322: 6ES7322-1BH01-0AA0,
If the SM 374 is used as a hybrid I/O module, configure a hybrid I/O module (8 inputs, 8 outputs) - recommended: SM 323: 6ES7323-1BH01-0AA0.
44: When the current is measured, when the sensor is short-circuited, will the analog input I+ of the module 6ES7 331-1KF0.-0AB0 be destroyed?
When the current is measured, the sensor short circuit occurs and the analog input I+ of the module 6ES7 331-1KF0.-0AB0 is not destroyed. This module has built-in overcurrent protection. Each 50 ohm resistor in the module has a PTC element on the front to prevent the input channel of the module from being damaged.
Note that the maximum allowable long-term input voltage is 12V and the short-term (up to 1 second) value is 30V.
45: If the CPU is turned off, does the 2-wire measurement transmitter continue to supply power?
If the transmitter module is plugged into position "D" and the module is powered by an external voltage on pins 1 and 20, the 2-wire measuring transducer continues to supply power. Even if the CPU is turned off, its supply current remains unchanged.
46: When using the S7-300 analog input module to measure temperature (Fahrenheit), can you use the absolute error limits listed in the module documentation?
It is not possible to use the specified error limit directly. Both basic and operational errors are stated in terms of absolute temperature and Celsius temperature. It must be multiplied by a factor of 1.8 to convert it to a Fahrenheit temperature unit.
Example: S7-300 AI 8 x RTD: The specified temperature input operation error is +/- 1.0 degrees Celsius. The maximum acceptable error when measured in degrees Fahrenheit is +/- 1.8 degrees Fahrenheit.
47: Why can't I read the constant current used to read the impedance on the analog input block with a commercial digital multimeter?
Almost all S5/S7 analog input devices still work in a complex manner, ie all channels are plugged into the only one AD converter in sequence. This principle also applies to the constant current necessary to read the impedance. Therefore, the current flowing through the resistor to be read is only used for short-term readings. For a SM331-7KF02-0AB0 with a selected interface to suppress "50Hz" and 8 parameterized channels, this means that the current will flow approximately every 180ms, with a 20ms read impedance each time.
48: Why is the voltage output of the S7-300 analog output group out of tolerance? What is the purpose of terminals S+ and S-?
The following description applies to all analog output modules SM 332:
When using the analog output module SM 332, care must be taken to return the assignment of the inputs S+ and S-. They serve the purpose of compensating for performance impedance. When a separate wire with S+ and S- is used to connect the two contacts of the actuator, the analog output regulates the output voltage so that the voltage actually present on the operating mechanism is the desired voltage.
If you want to get compensation, the actuator must be connected with 4 wires. This means that for the first channel, you need to:
The output voltage is connected to the actuator via pin 3 and pin 6.
Assign pin 4 and pin 5 of the actuator.
If you do not want to get compensation, simply jump on pins 3-4 and 5-6 on the front switch.
Note: Due to the open sensor terminals (S+ and S-), the output voltage is adjusted to a maximum of 140 mV (for 10V). g For this assignment, the 0.5% voltage output usage error limit cannot be maintained.
49: How to connect a potentiometer to 6ES7 331-1KF0-0AB0?
The sampling end and the head end of the potentiometer are connected to M+, the end is connected to M-, and S- and M- are connected together.
Note: The maximum strip resistance is 6K. If the potentiometer supports direct output of a variable voltage, the potentiometer should be connected to V+ at the head end and M- at the M end.
50: How do I connect a PT100 temperature sensor to the analog input module SM331?
The resistance of the PT100 thermal resistance varies with temperature. If a constant current flows through the thermal resistor, the voltage drop across the thermal resistor changes with temperature. A constant current is applied to the contacts Ic+ and Ic-. The analog module SM331 measures the change in current at M+ and M-. The temperature can be determined by measuring the voltage.
There are three types of connections from the PT100 to the analog input group: the 4-wire connection gives the most accurate measurements.
* Note:
1) The formula for 3-wire connection only indicates the actual measurement process of the analog input module SM331 (MLFB number is 6ES7 331-7Kxxx-0AB0)b".
2) In the S7-300 series, there are some analog inputs that have been measured multiple times. They specify the line resistance of the common return line and make mathematical compensation. The accuracy is almost comparable to a 4-wire connection. An example of such a module is SM331 (MLFB No. 6ES7 331-7PF00-0AB0).
3) The formula given still applies to the main physical relationship, but does not include an efficient measurement process to determine the resistance of the PT100. 51: Can I connect a HART measuring transducer to a conventional analog input module of the SIMATIC S7-300 series?
Other S7-300 analog input modules can also be used if other HART features of the HART measuring transducer are not required. For example, you can use the module 6ES7 331-7KF0x-0AB0 or ​​a 4-channel module with isolation (eg 6ES7 331-7RD00-0AB0). To do this, set the integration time to 16.66ms, 20ms or 100ms. For connecting to a handheld device or communicating with a handheld device, a 250-Ohm resistor must be connected in series in the circuit.
Note: If you want to program a HART measuring transducer via a controller (eg SIMATIC PDM), you must use a corresponding HART module (eg 6ES7 331-7TB00-0AB0 or ​​6ES7 332-5TB00-0AB0).
52: How to avoid the fluctuation of the analog input in the SM335 module?
The following wiring instructions are available for the following analog input/output modules of the MLFB: 6ES7335-7HG00-0AB0, 6ES7335-7HG01-0AB0
Check if you are using an ungrounded sensor mounted on an insulated rack or check that your sensor is grounded.
Sensor mounted on the insulated frame: connect the ground terminal Mana (pin 6) to the measuring channel M0 (pin 10), M1 (pin 12), through the shortest path (possibly connected directly to the connector at the front end). M2 (pin 14) and M 3 (pin 16) and central ground point (CGP).
Grounding sensor: Make sure the sensor has a good equipotential bonding. Then isolate the connection from M to Mana to the central ground point. Place the shield on both sides.
53: In the S7-300F, is it possible to combine the error check and standard modules on the central rack?
Error-proof and non-error-proof (standard) digital E/A modules can be mixed in the central rack of the S7-300F. For this reason, as in the ET200M, an isolation module (MLFB: 6ES7195-7KF00-0XA0) is required to isolate the error-proof module and the standard module in the central and expansion racks.
Please observe the following installation guidelines: Standard modules (IM, SM, FM, CP) must be inserted into the slot on the left side of the isolation module. The error-proof digital E/A module must be inserted into the slot on the right side of the isolation module.
54: Can I connect the sensor/actuator from explosion-proof zone 0 or explosion-proof zone 1 directly to the S7-300 Ex(i) module?
Sensors/actuators from explosion-proof zone 0 cannot be connected. However, the sensor/actuator from explosion-proof zone 1 can be connected directly.
The Ex(i) module is tested in accordance with [EEx ib] IIC. Therefore, there are two explosion-proof barriers on the module. However, it is necessary to obtain [EEx ia] approval to use the sensor/actuator from explosion-proof zone 0. (There should be three explosion-proof barriers on the module).
55: What should you pay special attention to when using the FM 355 or FM 355-2 in SIMATIC PCS 7?
For example, if you want to use the FM 355 or FM 355-2 in a redundant ET 200M station, please note the following important points:
There are two function blocks available for connecting the FM 355. For example, if you need to use the "Replace module during operation" (hot swap) function, you can use the advanced features of the IM 153-2 HF interface module with order number 6ES7 153-2BA00-0XB0. In this case, you must activate the "Replace module during operation" (hot swap) function when configuring with the "Hardware Configuration" software. The IM 153-2 and all SM/FM/CP are plugged into the active bus module (order no. 6ES7 195-7Hxxx-0XA0).
56: What are the precautions when connecting the output of the first FM 352-5 directly to the input of the second FM 352-5?
If you want to interconnect two FM352-5s, you can do this on the 6ES7 352-5AH10-0AE0 (P-type sink output).
6ES7 352-5AH00-0AE0 has M-type sinking output. This output is only available when first adding a plug-in resistor to each output. Recommended plug-in resistor specifications: 2,2 kOhm / 0,5 W. Ensure switch box There is a short circuit connection inside. The operating frequency in this case can be as high as 100 kHz.
57: Can I replace the FM353/FM354 without a PG?
can. FM353 (MLFB No. 6ES7 353-1AH01-0AE0) and FM354 (MLFB No. 6ES7 354-1AH01-0AE0) can be replaced without PG.
Requirements: Use the configuration package FM353 V2.1 or the configuration package FM354 V2.1 and STEP 7 version V3.1 or higher.
Step: After completing the FM and system startup, you must create a system data block (SDB >=1000) and store it on the PG.在这个SDBä¸å‚¨å˜FM的全部å‚数化数æ®(DB/横移程åºï¼Œæœºå™¨æ•°æ®,递增尺寸表ç‰)。把æ¤SDBä¼ é€åˆ°CPU æˆ–è€…ä¼ é€åˆ°CPU çš„å˜å‚¨å¡ä¸Šã€‚
58:在FM 350-2 上如何通过访问I/O 直接读å–计数值和测é‡å€¼ï¼Ÿ
FM 350-2 å…许最多四个计数值或测é‡å€¼ç›´æŽ¥æ˜¾ç¤ºåœ¨æ¨¡å—I/O上。å¯é€šè¿‡ä½¿ç”¨â€œæŒ‡å®šé€šé“â€åŠŸèƒ½æ¥å®šä¹‰å“ªä¸ªå•ä¸ªæµ‹é‡å€¼è¦æ˜¾ç¤ºåœ¨I/O åŒºã€‚æ ¹æ®è®¡æ•°å€¼æˆ–测é‡å€¼çš„大å°ï¼Œå¿…须在“用户类型â€ä¸å°†æ•°æ®æ ¼å¼å‚数化为“Wordâ€æˆ–“Dwordâ€ã€‚如果å‚数化为“Dwordâ€ï¼Œæ¯ä¸ªâ€œç”¨æˆ·ç±»åž‹â€åªèƒ½æœ‰ä¸€ä¸ªè®¡æ•°å€¼æˆ–测é‡å€¼ã€‚如果å‚数化为“Wordâ€ï¼Œå¯ä»¥è¯»è¿›ä¸¤ä¸ªå€¼ã€‚在用户程åºä¸ï¼Œå‘½ä»¤L PIW用于Word 访问,L PID用于Dword 访问。
59: FM357ï¼2 用ç»å¯¹ç¼–ç 器时应注æ„什么?
FM357ï¼2的固件版本为V3.2/V3.3在下列情况下ç»å¯¹ç¼–ç å™¨çš„é‡‡æ ·å€¼å¯èƒ½ä¼šä¸æ£ç¡®ï¼Œ FM357ï¼2固件版本为V3.4时这些问题将被解决。
1) FM357ï¼2å¯åŠ¨å¤±è´¥ã€‚例如,在å¯åŠ¨çª—å£ä¸å®šä¹‰çš„时间内掉电。
2) FM357ï¼2在è¿è¡Œä¸æ‹”æ’ç¼–ç 器的电缆。
3) 模拟的情况下。例如,FM357ï¼2 åœ¨æ— é©±åŠ¨çš„æƒ…å†µä¸‹å‡†å¤‡è¿è¡Œã€‚
60:如何把一个åˆå§‹å€¼å¿«é€Ÿä¸‹è½½è¿›è®¡æ•°å™¨ç»„FM350-1 或FM450-1 ä¸ï¼Ÿ
对于有些应用场åˆï¼Œé‡è¦çš„是,当达到æŸä¸ªæ¯”较值时è¦å°½å¿«åœ°æŠŠè®¡æ•°å™¨å¤ä½ä¸ºåˆå§‹å€¼ã€‚æ¤å¤–,通常在å¤ä½æ—¶éœ€è¦è¿›è¡Œä¸€ç³»åˆ—计算,以确定下一个比较值(以便优化原料的交点)ã€‚æ²¡æœ‰æ ‡å‡†åŠŸèƒ½FC CNT_CTRL也å¯ä»¥é€‰æ‹©è¿›è¡Œä¸€æ¬¡å¤ä½ã€‚ <
为了快速把计数器å¤ä½ï¼Œå¦‚下进行æ¥ç»„æ€è®¡æ•°å™¨ï¼š 在计数器模å—的“属性â€å¯¹è¯æ¡†ä¸çš„“基本å‚æ•°â€åŒºå†…,将选项生æˆä¸æ–设æˆâ€œæ˜¯â€ï¼Œç„¶åŽå°†ä¸æ–选择设æˆâ€œè¿‡ç¨‹â€ã€‚è¿™æ ·ï¼Œåœ¨å¤ä½æ—¶ä¼šç”Ÿæˆä¸€ä¸ªä¸æ–。 在“输出â€å‚æ•°æ ‡å¿—ä¸ç»„æ€æ•°å—输出DQ0,以便在达到比较值时激活它。 在“输入â€å‚æ•°æ ‡å¿—ä¸çš„“设置计数器â€åŸŸä¸ï¼Œè®¾ç½®é€‰é¡¹â€œå¤šä¸ªâ€ã€‚
注æ„事项:在关è”通é“æ•°æ®å—ä¸ï¼Œå¿…须将ä½DBX 27.0 或DBX 27.1 ( CTRL_DQ0) 设置为1,以便使设置按æ£ç¡®çš„æ–¹å‘进行。在“ä¸æ–释放â€å‚æ•°æ ‡å¿—ä¸ï¼Œé€‰æ‹©é€‰é¡¹â€œè®¾ç½®è®¡æ•°å™¨â€ï¼Œä»¥ä¾¿åœ¨æ•°å—输入SET处出现一个上å‡æ²¿æ—¶è§¦å‘该ä¸æ–。 功能模å—FM 350-1 / FM 450-1 çš„æ•°å—输入I2是用于把计数器é‡ç½®ä¸ºåˆå§‹å€¼çš„。该输入与数å—输出Q0 相连接(åŒFM 350-1 / FM 450-1)。
注æ„事项:在关è”通é“çš„æ•°æ®å—ä¸ï¼Œå¿…须预先将数æ®åŒå—DBD 14(LOAD_VAL)设置为åˆå§‹å€¼(如L#0)。数æ®åŒå—DBD18 (CMP_V1)必须设置æˆæ¯”较值。必须通过在FC 上置相应的触å‘ä½ä¸€æ¬¡æ¥ç”¨FC CNT_CTRL æŠŠè¿™äº›å€¼ä¼ é€åˆ°FM 去。
61:为什么在FM350-1ä¸é€‰24Vç¼–ç 器,å¯åŠ¨ä»¥åŽ,SFç¯å¸¸äº®,FM350ï¼1ä¸èƒ½å·¥ä½œ?
è¦æ£€æŸ¥ä¸€ä¸‹,首先在软件组æ€ä¸è¦é€‰æ‹©ç¼–ç 器类型(为24V),å†æ£€æŸ¥ä¸€ä¸‹,FM350-1侧é¢çš„跳线开关,å› ä¸ºç¼ºçœçš„开关设置为5Vç¼–ç 器,一般用户没有设置,开机åŽ,SFç¯å°±ä¼šå¸¸äº®å¦å¤–,还å¯ä»¥çœ‹çœ‹åœ¨çº¿ç¡¬ä»¶è¯Šæ–,å¯ä»¥çœ‹çœ‹é”™è¯¯äº§ç”Ÿçš„åŽŸå› ,是å¦æ¨¡æ¿å了。
62: FM350ï¼1çš„é”å˜åŠŸèƒ½æ˜¯å¦èƒ½äº§ç”Ÿè¿‡ç¨‹ä¸æ–?
FM350ï¼1çš„é”å˜åŠŸèƒ½æ˜¯ä¸èƒ½äº§ç”Ÿè¿‡ç¨‹ä¸æ–,但是å¯ä»¥äº§ç”Ÿè¿‡é›¶ä¸æ–。
FM350ï¼1的装载值必须为零,éšè€…é”å˜åŠŸèƒ½çš„执行(DI的上å‡æ²¿å¼€å§‹),当å‰çš„计数值被储å˜åˆ°å¦ä¸€åœ°å€ç„¶åŽç½®ä¸ºåˆå§‹å€¼é›¶,产生过零ä¸æ–,在OB40ä¸å¯ä»¥è¯»å‡ºä¸æ–并相应的值。é”å˜å€¼ä¹Ÿå¯ä»¥ä»ŽFM350ï¼1的硬件组æ€åœ°å€çš„å‰4个å—节ä¸è¯»å‡ºã€‚
63: 在FM350-1ä¸,æ€Žæ ·è§¦å‘一个比较器输出?
FM350-1ä¸è‡ªå¸¦çš„输出点具有快速性ã€å®žæ—¶æ€§ï¼Œä¸å¿…è¦ç»è¿‡CPUçš„æ˜ åƒåŒºå¤„ç†ã€‚输出点一般对应于比较器,首先在硬件组æ€ä¸å®šä¹‰æ¯”较器输出类型,如:输出值为1或为脉冲输出,然åŽåœ¨ç¨‹åºä¸è®¾ç½®æ¯”较值。在FM350-1ä¸,地å€åœ¨é€šè®¯DB(UDT生æˆ)å—ä¸ä¸º18(比较值1)ã€22(比较值2),类型为DINT,然åŽæ¿€æ´»è¾“出点28.0(DQ0)ã€28.1(DQ1),è¿™æ ·æ¯”è¾ƒå™¨å°±å¯ä»¥å·¥ä½œäº†ã€‚
64:在FM350-2ä¸,工作å·çš„作用是什么?
工作å·æ˜¯S7ï¼300CPU与FM进行通讯的任务å·,æ¯æ¬¡çš„交æ¢æ•°æ®åªæ˜¯éƒ¨åˆ†æ•°æ®äº¤æ¢,而éžå…¨éƒ¨æ•°æ®,è¿™æ ·å¯ä»¥å‡å°‘FM的工作负载,工作å·åˆåˆ†å†™å·¥ä½œå·å’Œè¯»å·¥ä½œå·,例如在FM350ï¼2ä¸æŒ‡å®šDB1为通讯数æ®å—,如果把写工作å·12写入到DB1.DBB0ä¸,把200写入到DB1.DBD52ä¸,å†è°ƒç”¨FC3写功能,è¿™æ ·ç¬¬ä¸€ä¸ªè®¡æ•°å™¨çš„åˆå§‹å€¼ä¸º200,这里工作å·10的任务å·æ˜¯å†™ç¬¬ä¸€ä¸ªè®¡æ•°å™¨çš„åˆå§‹å€¼,DB1.DBB0为写工作å·å˜å…¥åœ°å€,DB1.DBD52为第一个计数器装载地å€åŒº,åŒæ ·è¯»å·¥ä½œå·100为读å‰4è·¯,101为读åŽ4路计数器,读工作å·å˜å…¥åœ°å€ä¸ºDB1.DBB2。 但写任务ä¸èƒ½å¾ªçŽ¯å†™,åªèƒ½åˆ†æ—¶å†™å…¥ã€‚
65:如果对于4-20 mA模拟é‡è¾“入模å—æ¥è¯´ï¼Œå°äºŽ4 mAåŽè½¬æ¢çš„æ•°å—é‡æ˜¯å¤šå°‘?
如果å°äºŽ4ma,那么将会是输出负值,例如-1对应的是3.9995mA,而1.185 mA 时,这个数值是-4864 (10进制)但是如果å°äºŽ1.185mA,如果ç¦æ¢æ–线检测,这个值是8000(16进制)如果有æ–线检测,会å˜æˆ7FFF(16进制)。
66ï¼šæ€Žæ ·å¯¹æ¨¡æ‹Ÿé‡è¿›è¡Œæ ‡å‡†åŒ–å’Œéžæ ‡å‡†åŒ–?
å¯ä»¥ä½¿ç”¨ä»¥ä¸‹åŠŸèƒ½å—:
1.在å—FC164ä¸ï¼Œxå’Œy都是整数。
2. FC165ä¸x是整数,y是实数。
3. FC166ä¸x是实数,y是整数。
4. FC167ä¸xå’Œy都是实数。
67:S7系列PLC之间最ç»æµŽçš„通讯方å¼æ˜¯ä»€ä¹ˆï¼Ÿ
MPI通讯是S7系列PLC之间一ç§æœ€ç»æµŽã€æ•°æ®é‡æœ€å°çš„一ç§é€šè®¯ï¼Œéœ€è¦åšè¿žæŽ¥é…置的站通过GD通讯,GD通讯适åˆäºŽS7ï¼300之间,S7ï¼300ã€S7ï¼400ã€MPI之间一些固定数æ®çš„通讯。ä¸ç”¨ä½œè¿žæŽ¥çš„MPI通讯适用于S7-300之间ã€S7-300与400之间ã€S7-300/400与S7ï¼200 系列PLC之间的通讯,建议在OB35(循环ä¸æ–100ms)ä¸è°ƒç”¨å‘é€å—,在OB1(主循环组织å—)调用接收å—。
68:整个系统掉电åŽï¼Œä¸ºä»€ä¹ˆCPU在电æºæ¢å¤åŽä»ä¿æŒåœ¨åœæ¢çŠ¶æ€ï¼Ÿ
整个系统由一个DP主站S7-300/400以åŠä»Žç«™ç»„æˆã€‚而从站通过一个主开关被切æ–了电æºã€‚由于内部的CPU电压缓冲器,CPU ä»ç»§ç»è¿è¡Œå¤§çº¦50ms到100ms。æ¤é˜¶æ®µé‡ŒCPU 识别出所连接的从站的故障。如果没有编程OB86å’ŒOB122çš„è¯ï¼ŒCPU å°±ä¼šå› ä¸ºè¿™äº›æœ‰æ•…éšœçš„ä»Žç«™è€Œç»§ç»ä¿ç•™åœ¨åœæ¢çŠ¶æ€ã€‚
69:在点到点通信ä¸ï¼Œåè®®3964(R)å’ŒRK 512 之间的区别是什么?
这两个å议的主è¦åŒºåˆ«åœ¨äºŽæ¶ˆæ¯æŠ¥å¤´å’Œå“应消æ¯çš„ä¸åŒã€‚使用RK 512,æ供有最高的数æ®å®Œæ•´æ€§,程åº3964(R) å½“ä¼ é€ä¿¡æ¯æ•°æ®æ—¶ï¼Œç¨‹åº3964(R)将控制å—符(安全层)æ·»åŠ åˆ°ä¿¡æ¯æ•°æ®ä¸Šã€‚这些控制å—符激活通信伙伴,检查数æ®æ˜¯å¦å…¨éƒ¨æŽ¥æ”¶ï¼Œæ˜¯å¦æ— 错误。
70:当一个DPä»Žç«™å‡ºæ•…éšœï¼Œå¦‚ä½•åœ¨è¾“å…¥çš„è¿‡ç¨‹æ˜ åƒè¢«æ¸…æˆâ€œ0â€ä»¥å‰ä¿å˜å®ƒä»¬ï¼Ÿ
当一个DP从站出故障时,OB86(通过S7-300/400)被调用。å¯ç”¨ä¸‹åˆ—方法“ä¿å˜â€è¾“å…¥çš„è¿‡ç¨‹æ˜ åƒï¼š
1. 把从站的所有输入循环地å¤åˆ¶åˆ°ä¸€ä¸ªç‹¬ç«‹çš„区里。
2.如果从站出问题,则OB86 被å¯åŠ¨ã€‚在æ¤OB é‡Œä½ å¯è®¾ä¸€ä¸ªæ ‡å¿—ä½æ¥å¯é˜²æ¢è¿›ä¸€æ¥çš„循环å¤åˆ¶æ“作。
3. 当从站返回总线åŽï¼Œä½ 把OB86 é‡Œçš„æ ‡å¿—ä½å¤ä½ã€‚
71:对模拟é‡æ¨¡å—而言,如何处ç†æœªä½¿ç”¨çš„通é“?
如果模å—带有MANA : çŸæŽ¥æ‰€æœ‰çš„未使用通é“çš„M-到MANA ,如果å¯èƒ½ï¼Œè¿žæŽ¥MANA 到接地æžï¼ŒæŠŠæ¨¡å—的测é‡æ¨¡å¼è®¾ç½®ä¸ºï¼š 0 - 20/ + -20mA. ,çŸæŽ¥æœªä½¿ç”¨çš„COMP+/COMP-. IC+ / IC-å¯ä»¥ä¿æŒæ‚¬ç©ºã€‚
如果模å—ä¸å¸¦æœ‰MANA : 把所有未使用的通é“M-连接到使用通é“çš„M-.ç‰åœ¨è¾“入端UCM > 2.5V 时,连接所有未使用的M-到cpu的接地或系统的接地. 把模å—的测é‡æ¨¡å¼è®¾ç½®ä¸ºï¼š 0 - 20/ + -20mA. ,çŸæŽ¥æœªä½¿ç”¨çš„COMP+/COMP-. IC+ / IC-å¯ä»¥ä¿æŒæ‚¬ç©ºã€‚
对于SM 331-7NF10-0AB0模å—在4通é“模å¼ï¼šç¦æ¢æœªç”¨çš„通é“,这些输入端悬空å³å¯å¯¹äºŽEx模å—SM 331-7RD:未使用的通é“å¯ä»¥ä¿æŒæ‚¬ç©º72:上ä½æœºä¸Žplc进行通讯,硬件都需è¦å“ªäº›ï¼Ÿ
72:哪些软件里å«æœ‰CP5511,CP5512,CP5611,RS232 PC-Adapter 的驱动?
如果安装了相应的软件åŽåŒ…å«â€œSet PG/PC Interface …â€ç»„件,那么这些软件都å«æœ‰CP5511,CP5512,CP5611,RS232 PC-Adapter 的驱动,åªéœ€åœ¨â€œSet PG/PC Interface …â€->“Select…â€->选择相应的驱动,然åŽâ€œInstallï¼ï¼>â€å³å¯ã€‚
具体的软件有Step7,Step7 MicroWin,Simatic Net,WinCC,Protool,Flexible,PCS7。
73:当试图通过TeleService建立PRODAVE MPIå’Œæ ·åˆ—ç¨‹åºä¹‹é—´çš„通讯时,为什么会出现出错消æ¯4501?
调制解调器没有å“应,并产生了出错消æ¯4501。在这个情况下,工作站的规范ä¸æ£ç¡®ã€‚ 在TeleService对è¯æ¡†ä¸æ£€æŸ¥å·¥ä½œç«™çš„å称和工作站(standort)规范。æ¤å¤„å¯èƒ½æœ‰ä¸ªä¸æ£ç¡®çš„缺çœè®¾åˆ 除“stationâ€(“standortâ€)域ä¸çš„缺çœå,或输入æ£ç¡®çš„工作站å。那么就å¯ä»¥ä½¿ç”¨è°ƒåˆ¶è§£è°ƒå™¨åœ¨PRODAVE MPIYå’ŒTeleService之间建立连接。
74:是å¦å¯ä»¥å°†æ•°æ®å—的当å‰å€¼ä½œä¸ºåˆå§‹å€¼ä»ŽASä¼ é€åˆ°é¡¹ç›®ä¸?
å¯ä»¥ã€‚从ASä¸â€œONLINE,打开相关数æ®å—(DB).ä½¿ç”¨è½¯ç›˜å›¾æ ‡â€œOFFLINEâ€ä¿å˜DB.
通过“File > Generate Sourceâ€åœ¨DBä¸äº§ç”ŸSTLæºä»£ç . 通过手动æ“作将BEGINå’ŒEND_DATA_BLOCK行之间的当å‰å€¼ä¸Žç›¸åº”的声明(åˆå§‹å€¼)é€è¡Œè¿žæŽ¥èµ·æ¥ï¼Œä»Žè€Œå¾—到下列声明è¯å¥ï¼š
STRUCT
wordVar : WORD := W#16#ABCDï¼›
...
END_STRUCT ï¼›
编译STLæºä»£ç 。
75:在通讯任务ä¸ï¼Œåœ¨å“ªäº›OBä¸å¿…须调用SFB?
在å¯åŠ¨åž‹OB(如用于S7-300çš„OB100和用于S7-400çš„OB100å’ŒOB101)和循环模å¼OB(OB1)ä¸ï¼Œå¿…须调用数æ®é€šè®¯æˆ–程åºç®¡ç†(把PLC切æ¢åˆ°STOP或RUN)所需的所有SFB。 OB100是å¯åŠ¨åž‹OB,并在é‡æ–°å¯åŠ¨CPUæ—¶è¿è¡Œã€‚例如,在该OBä¸ï¼Œç”¨æ ‡è®°M1.0å’ŒM0.1æ¥é‡Šæ”¾ç¬¬ä¸€ä¸ªé€šè®¯è§¦å‘器。
76ï¼šæ€Žæ ·ç¼–ç¨‹é—´æŽ¥è®¿é—®ä¸€ä¸ªARRAY类型å˜é‡çš„å…ƒç´ ï¼Ÿ
一个ä½ã€å—节或者å—符域的尺寸是按照å—节é™åˆ¶æŽ’列的——在所有其它情况下是按照å—对é½çš„。表T6-1ä¸ç»™å‡ºäº†ä¸€ä¸ªåŸŸçš„å˜å‚¨ç¤ºä¾‹ã€‚æ“作系统计算域ä¸å•ä¸ªå…ƒç´ 末端ä½ç½®çš„ä½åœ°å€ã€‚域被分é…到从下一个å—地å€(或å—节地å€)。下一个数æ®ç±»åž‹ä»Žä¸‹ä¸€ä¸ªæ•´å—开始(或者整å—节).
声明部分:
在声明部分,必须定义一个与将被间接寻å€çš„ARRAY有ç€åŒä¸€ç»“æž„çš„ARRAY。ä¸ä¸€å®šéžè¦å°†ARRAY声明为IN-OUTå˜é‡ï¼›ä¹Ÿå¯ä»¥å£°æ˜Žä¸ºTEMPã€IN或OUTå˜é‡ã€‚
网络:
域宽度(OFFSET)在网络ä¸å®šä¹‰ã€‚ARRAYä¸çš„å•ä¸ªå…ƒç´ 的最å°å¸¸è§„æ•°æ®å®½åº¦æ˜¯ä¸€ä¸ªå—节;å³ä½¿åœ¨ä¸¤ä¸ªå˜é‡ä¹‹é—´å®šä¹‰ä¸€ä¸ªBOOL。有必è¦ç¡®å®šç›¸å…³çš„域的宽度和确定下一个期望域的起始地å€ã€‚å¯ä½¿ç”¨ä¸‹é¢çš„算法: 地å€(指数):b = å…ƒç´ é•¿åº¦*(指数- 1)
创建具有ä¸åŒæ•°æ®ç±»åž‹çš„结构时,必须注æ„,在特定的环境下å¯èƒ½ä¼šè‡ªåŠ¨æ’入填充å—节。
ä¿å˜ARRAYæ•°æ®ç±»åž‹ç¤ºä¾‹ï¼šARRAY ã€1..2,1..3】 OF 整数将生æˆä¸‹åˆ—域:
多维域是按照顺åºä¿å˜çš„。在本例ä¸æ•´æ•°ã€1,1】åŽé¢æ˜¯æ•´æ•°ã€1,2】,整数ã€1,3】åŽé¢æ˜¯æ•´æ•°ã€2,1】。
77:STEP 7 以哪ç§æ ¼å¼å˜å‚¨POINTERå‚数类型?
STEP 7以6 个å—节ä¿å˜POINTERå‚数。显示了用于ä¿å˜POINTERå‚数类型的内å˜åŒºåŸŸä»¥åŠæ¯ä¸ªå—节ä¸ä¿å˜çš„æ•°æ®ã€‚POINTERå‚数类型ä¿å˜äº†ä¸‹åˆ—ä¿¡æ¯ï¼š DBå·(如果DBä¸æ²¡æœ‰ä¿å˜ä»»ä½•æ•°æ®æ—¶ä¸º0)。 CPUä¸çš„内å˜åŒºåŸŸ(è¡¨æ ¼ä¸åˆ—出了ä¸åŒå†…å˜åŒºåŸŸçš„åå…进制代ç )。
æ•°æ®çš„地å€(按照Byte.Bitæ ¼å¼)。
如果将形å¼å‚数声明为POINTERå‚数类型,则åªéœ€è¦æŒ‡å®šå†…å˜åŒºåŸŸå’Œåœ°å€ã€‚STEP 7è‡ªåŠ¨å°†è¾“å…¥é¡¹ç›®çš„æ ¼å¼è½¬æ¢ä¸ºæŒ‡é’ˆæ ¼å¼ã€‚
78ï¼šå› ä¸ºæ€»æ˜¯è¦é¦–次调用Alarm8P(SFB35)å—ï¼Œæ€Žæ ·é¿å…OB 1åˆå§‹åŒ–过程花费太长时间?
激活(首次调用)报è¦å—Alarm(SFB33)ã€A larm_8(SFB34)å’ŒAlarm_8P(SFB35)比简å•åœ°æ‰§è¡Œä½œä¸šæ£€æŸ¥éœ€è¦å¤šèŠ±è´¹2 到3 å€çš„è¿è¡Œæ—¶é—´ã€‚å½“ä¼ é€å‘Šè¦æ—¶ï¼Œå—çš„è¿è¡Œæ—¶é—´ä¹Ÿä¼šåŒæ ·é•¿ã€‚ 然而è¦æŠ¥é€šå¸¸ä¸ä¼šæˆç¾¤å‘生,当编程时,需è¦æ³¨æ„è¦æŠ¥å—çš„é¦–æ¬¡è°ƒç”¨ï¼Œå› ä¸ºæ¤å¤„用到的所有å—需è¦å¾ˆé•¿çš„è¿è¡Œæ—¶é—´ï¼Œå› æ¤è¢«è°ƒç”¨OBçš„è¿è¡Œæ—¶é—´åœ¨æŸäº›æƒ…å†µä¸‹å°†æ˜¾è‘—å¢žåŠ ã€‚å°†è¦æŠ¥å—的首次调用移动到OB 100/101/102,å¯ä»¥å°†è¾ƒé•¿çš„è¿è¡Œæ—¶é—´è½¬æ¢åˆ°å¯åŠ¨è¿‡ç¨‹ã€‚æ¤å¤„处ç†æ—¶é—´ä¹Ÿä¼šè¾ƒé•¿ï¼Œä½†æ˜¯ç”±äºŽä¸Žæ¨¡å—çš„å‚数设置åŒæ—¶è¿›è¡Œï¼Œå¯åŠ¨æ—¶é—´ä¸ä¼šå¤ªé•¿ã€‚
79:当ä¸èƒ½å¸è½½STEP 7时,该怎么办?
设法通过控制é¢æ¿å¸è½½STEP 7。如果安装文件已æŸå,å¸è½½ç¨‹åºå¸¸ä¼šå‡ºé”™ï¼Œå¹¶ä¼´éšå‡ºé”™ä¿¡æ¯ã€‚ å¦å¤–STEP 7 CD包å«æ–‡ä»¶Simatic STEP7.msi。å¯ä»¥é€šè¿‡è¿™ä¸ªæ–‡ä»¶å¸è½½STEP 7。
80ï¼šåŠ å¯†çš„300PLC MMC处ç†æ–¹æ³•ï¼Ÿ
如果您忘记了您在S7-300CPU Protection属性ä¸æ‰€è®¾å®šçš„密ç ,那么您åªèƒ½å¤Ÿé‡‡ç”¨siemens的编程器PG(6ES7798-0BA00-0XA0)上的读å¡æ§½æˆ–采用带USB接å£çš„读å¡å™¨ï¼ˆUSB delete?S7 Memory Card?prommer 6ES7792-0AA00-0XA0),选择SIMATIC Managerç•Œé¢ä¸‹çš„èœå•File é€‰é¡¹åˆ é™¤MMCå¡ä¸ŠåŽŸæœ‰çš„å†…å®¹ï¼Œè¿™æ ·MMCå°±å¯ä»¥ä½œä¸ºä¸€ä¸ªæœªåŠ 密的空å¡ä½¿ç”¨äº†ï¼Œä½†æ— 法对MMCå¡è¿›è¡Œjie密,读å–MMCå¡ä¸çš„程åºæˆ–æ•°æ®ã€‚
81: 以314C为例计数时如何清计数器值?
有两ç§æ–¹æ³•ï¼š
1:在å‚数设置ä¸â€œGate functionâ€é€‰â€œCancel countâ€è½¯ä»¶é—¨ä¸º0,在为1时,值将清零,
2:利用写“Jobâ€çš„æ–¹å¼ï¼Œå†™è®¡æ•°å€¼çš„任务å·ä¸º1。
82:CP342-5能å¦ç”¨äºŽPROFIBUS FMSå议通讯?
CP342-5支æŒPROFIBUS DPå议,ä¸èƒ½ç”¨äºŽPROFIBUS FMSå议通讯,åŒæ ·CP343-5åªæ”¯æŒPROFIBUS FMSå议,ä¸èƒ½ç”¨äºŽPROFIBUS DPå议通讯,而CP342-5å’ŒCP343-5都支æŒPROFIBUS FDL的链接方å¼ï¼›
83:为什么CP342-5 FOæ— æ³•å»ºç«‹é€šè®¯ï¼Ÿå¦‚ä½•é…置?
CP342-5 FOä¸æ”¯æŒ3MB,6MB的通讯速率,如果您è´ä¹°çš„是5.1版本的CP342-5,而STEP7ä¸æ²¡æœ‰V5.1版的CP342-5æ—¶,则å¯ä»¥æ’入一个V5.0版的CP342-5模å—,功能ä¸å—å½±å“。CP342-5在S7-300系统ä¸çš„安装ä½ç½®ä¸Žæ™®é€šçš„S7-300 I/O模å—ä¸€æ ·ï¼Œå¯ä»¥æ’在4至11è¿™8个槽ä½ä¸çš„任何一个。
84:CP342-5çš„3ä¸å·¥ä½œæ–¹å¼æœ‰ä»€ä¹ˆåŒºåˆ«ï¼Ÿ
No DPæ–¹å¼ä¸‹ï¼šå¯ä»¥ç”¨CP342-5通讯å£è¿›è¡ŒS7编程或进行PROFIBUSçš„FDL连接,连接人机界é¢ï¼›
DP Masteræ–¹å¼ä¸‹ï¼šCP342-5除了作为网络ä¸çš„PROFIBUS主站之外,也å¯ç”¨äºŽS7编程ã€FDL连接和连接人机界é¢ã€‚DP delay timeå‚数一般ä¸éœ€è®¾å®šï¼Œé™¤éžæ‚¨é‡‡ç”¨FDL连接时,è¦ä¸ŽDPçš„Iã€O点刷新时间相一致,æ‰æ ¹æ®PROFIBUS网络性能进行调整;
DP Slaveæ–¹å¼ä¸‹ï¼šCP342-5除了作为网络ä¸çš„从站之外,如果选择了The module is an active node on the PROFIBUS subnet选择框,那么CP 342-5也å¯ç”¨äºŽS7编程ã€FDL连接和连接人机界é¢ï¼Œå¦åˆ™CP342-5åªèƒ½ä½œä¸ºä»Žç«™ä½¿ç”¨ï¼›
85:CP342-5 最多能完æˆå¤šå°‘æ•°æ®äº¤æ¢ï¼Ÿ
一套S7-300系统ä¸æœ€å¤šå¯ä»¥åŒæ—¶ä½¿ç”¨4å—CP342-5模å—,æ¯å—CP342-5能够支æŒ16个S7 Connection,16个S5-Compatible Connection。当CP342-5处在No DP模å¼ä¸‹å·¥ä½œæ—¶ï¼Œæœ€å¤šåŒæ—¶æ”¯æŒ32个通讯链接,而处在DP Slave或DP Master模å¼ä¸‹æ—¶ï¼Œæœ€å¤šåŒæ—¶æ”¯æŒ28个通讯链接。CP342-5 作为PROFIBUS DP主站时,最多链接124个从站,和æ¯ä¸ªä»Žç«™æœ€å¤šå¯ä»¥äº¤æ¢244个输入å—节(Input)和244个输出å—节(Output),与所有从站总共最多交æ¢2160个输入å—节和2160个输出å—节。CP342-5 作为从站时,与主站最多能够交æ¢240个输入å—节和240个输出å—节。CP342-5 å¯ä»¥æœ€å¤šè¿žæŽ¥16个æ“作é¢æ¿ï¼ˆOP)以åŠæœ€å¤šåˆ›å»º16个S7 Connnection。
86:如何实现在从站æ–电ã€é€šè®¯å¤±è´¥æˆ–从站通讯å£æŸåç‰çŽ°è±¡å‡ºçŽ°æ—¶ï¼Œä¸»ç«™èƒ½å¤Ÿä¸åœæœºï¼Ÿ
需è¦åœ¨æ‚¨çš„STEP7项目ä¸æ’入相应组织å—。æ’入这些组织å—时,ä¸éœ€è¦ç¼–程内容,当从站æ–电ã€é€šè®¯å¤±è´¥ç‰çŽ°è±¡å‡ºçŽ°æ—¶ï¼Œä¸»ç«™åªæŠ¥æ€»çº¿æ•…障,但ä¸åœæœºã€‚è¿™æ ·ï¼Œæ— è®ºä»Žç«™å…ˆä¸Šç”µï¼Œè¿˜æ˜¯ä¸»ç«™å…ˆä¸Šç”µï¼Œç³»ç»Ÿéƒ½èƒ½æ£å¸¸è¿è¡Œï¼š
在S7-300ä¸åŠ å…¥OB82ã€OB86ã€OB122ï¼› 在S7-400ä¸åŠ å…¥OB82~OB87ã€OB122ï¼›
87:CP342-5连接上ä½æœºè½¯ä»¶æˆ–æ“作é¢æ¿æ—¶åº”该选择什么工作模å¼ï¼Ÿ
如果您åªæ˜¯ç”¨CP342-5连接上ä½æœºè½¯ä»¶æˆ–æ“作é¢æ¿ï¼ˆOP),这时通讯采用的是S7å议,那么建议您选择No DP模å¼ï¼Œå¹¶ä¸”ä¸éœ€è¦è°ƒç”¨FC1(DP_SEND)和FC2(DP_RECV)功能å—,它们åªæ˜¯åœ¨PROFIBUS DP通讯时æ‰ä½¿ç”¨ï¼›
88:为什么系统上电åŽï¼Œå³ä½¿CP342-5开关已ç»æ‹¨è‡³Run,但始终处于STOP状æ€ï¼Ÿ
应当检查STEP7程åºå’Œç»„æ€æ˜¯å¦æ£ç¡®ï¼ˆåˆ 除程åºï¼Œåªä¸‹è½½ç¡¬ä»¶ç»„æ€ï¼‰ã€æ£€æŸ¥CP342-5连接的24V电æºçº¿æ˜¯å¦æ£å¸¸ã€M端是å¦ä¸ŽCPUçš„M端çŸæŽ¥ã€é€šè®¯ç”µç¼†è¿žæŽ¥æ˜¯å¦æ£ç¡®ï¼ˆç¡®è®¤é€šè®¯ç”µç¼†æœªå†…部çŸè·¯ï¼‰ï¼ŒCPçš„firmware是å¦æ£ç¡®ã€‚如果您确认å¯ä»¥æŽ’é™¤ä»¥ä¸ŠåŽŸå› ï¼Œé‚£ä¹ˆå¯èƒ½æ‚¨çš„CP342-5å·²ç»æŸå,请更æ¢ï¼›
89:如何用CP342-5组æ€PROFIBUS从站?
1.在STEP7ä¸ç”Ÿæˆä¸€ä¸ªæ–°çš„项目,并æ’入一个S7-300站。
2.在硬件组æ€çª—å£ä¸é€‰æ‹©ä¸€ä¸ªS7300的导轨以åŠç›¸åº”çš„CPU。
3.硬件组æ€çª—å£ä¸ï¼Œåœ¨è·¯å¾„"SIMATIC 300 > CP 300 > PROFIBUS > CP342-5" 选ä¸äºŽæ‚¨è®¢è´§å·å’Œç‰ˆæœ¬å·å¯¹åº”çš„CP342-5,æ’入到S7300站对应的槽ä½ä¸ï¼Œæ³¨æ„如果您è´ä¹°çš„是Version5.1,而组æ€ä¸åªèƒ½å¤Ÿæ‰¾åˆ°Version5.0,您å¯ä»¥é€‰ç”¨Version5.1替代Version5.0.。
4.在æ’å…¥CP342-5的过程ä¸ï¼Œä¼šå¼¹å‡ºä¸€ä¸ªPROFIBUS属性窗å£ï¼Œè¯·ç‚¹å‡»â€New…â€æŒ‰é’®ï¼Œåˆ›å»ºä¸€ä¸ªPROFIBUS网络PROFIBUS(1) ,并设定CP342-5作为从站的站地å€ä¸º3。
5.åŒå‡»CP342-5,打开CP342-5的属性窗å£ï¼Œåœ¨"Operating Mode" æ ‡ç¾é¡µä¸‹é€‰æ‹©"DP Slave" 选项,æ¤æ—¶ä¼šå¼¹å‡ºä¸€ä¸ªè¦ç¤ºçª—å£ï¼Œå‘ŠçŸ¥æ‚¨å¦‚æžœè¦ç”¨CP342-5实现CPUå’ŒPROFIBUS从站的通讯,必须调用FC1(DP_SEND)å’ŒFC2(DP_RECV)功能å—,实现CPU与CP342-5之间的数æ®äº¤æ¢ï¼Œè€ŒCP342-5与PROFIBUSçš„æ•°æ®äº¤æ¢æ˜¯è‡ªåŠ¨å®Œæˆçš„,ä¸ç”¨ç¼–程。FC3å’ŒFC4用于诊æ–和通讯功能的控制,一般ä¸ç”¨è°ƒç”¨ã€‚
6.点击OK ,å˜ç›˜ç¼–译。.
90:如何用CP342-5组æ€PROFIBUS主站?
1.在STEP7çš„SIMATIC Manager窗å£ä¸åœ¨æ’入一个S7300站;
2.é‡å¤ä»¥ä¸Šç»„æ€ä»Žç«™æ¥éª¤çš„2-4æ¥ï¼Œæ³¨æ„æ’å…¥CP342-5时,ä¸èƒ½ç‚¹å‡»â€new…â€æŒ‰é’®ï¼Œè€Œç›´æŽ¥ç”¨é¼ æ ‡é€‰ä¸ä»¥ä¸Šåˆ›å»ºçš„PROFIBUS(1)网络,点击OKï¼›
在"Operating Mode"æ ‡ç¾é¡µä¸é€‰æ‹©"DP Master"选项;
91:采用CP342-5çš„DP通讯å£ä¸Žé‡‡ç”¨CPU集æˆçš„DP通讯å£è¿›è¡Œé€šè®¯æœ‰ä»€ä¹ˆä¸åŒï¼Œè¿™ä¸¤ç§é€šè®¯å£åŠŸèƒ½æœ‰ä»€ä¹ˆä¸åŒï¼Ÿ
å¯ä»¥é€šè¿‡CPU集æˆçš„DP通讯å£æˆ–CP443-5模æ¿çš„DP通讯å£ï¼Œè°ƒç”¨Load/Transfer指令(è¯å¥è¡¨ç¼–程,如图2)ã€Mov指令(梯形图编程)或系统功能å—SFC14/15访问从站上的I/Oæ•°æ®ï¼›
如果您使用342-5模å—çš„DP通讯å£è¿›è¡Œé€šè®¯ï¼Œé‚£ä¹ˆæ‚¨å°±ä¸èƒ½ä½¿ç”¨Load/Transfer指令(è¯å¥è¡¨ç¼–程)ã€Mov指令(梯形图编程)直接访问PROFIBUS从站的I/Oæ•°æ®ã€‚采用CP342进行PROFIBUS通讯包括两个æ¥éª¤ï¼š
1.CPU将数æ®ä¼ 输到CP通讯å¡çš„æ•°æ®å¯„å˜å™¨å½“ä¸ï¼›
2.æ•°æ®ä»ŽCP342-5çš„æ•°æ®å¯„å˜å™¨å½“ä¸å†™åˆ°PROFIBUS从站的Outputæ•°æ®åŒºï¼ˆå过æ¥å°±æ˜¯CPU读å–从站Inputæ•°æ®çš„过程);CP342-5与从站的Input/Outputæ•°æ®åŒºçš„通讯过程是自动进行的,但是您还必须自己手动的调用功能å—FC1(â€SENDâ€ï¼‰å’ŒFC2 (â€RECVâ€ï¼‰ï¼Œå®ŒæˆCP342-5与CPU之间的数æ®äº¤æ¢ã€‚
92:功能å—DP_SENDã€DP_RECV"的返回值代表什么æ„æ€ï¼Œå¦‚何ç†è§£ï¼Ÿ
"DP_SEND"功能å—包括有"DONE","ERROR" å’Œ"STATUS"三个å‚数,用æ¥æŒ‡ç¤ºæ•°æ®ä¼ 输的状æ€å’ŒæˆåŠŸä¸Žå¦ã€‚"DP_RECV"功能å—包括有"NDR", "ERROR", "STATUS" å’Œ"DPSTATUS"四个å‚数,用æ¥æŒ‡ç¤ºæ•°æ®ä¼ 输的状æ€å’ŒæˆåŠŸä¸Žå¦ã€‚您å¯ä»¥å®šä¹‰ç›¸åº”çš„æ•°æ®åœ°å€åŒºï¼Œå˜æ”¾è¿™äº›è¿”回值,分æžè¿”回的值的æ„æ€ï¼Œå½“Errorï¼False,STATUSï¼0,DONE=True,NDRï¼True时,说明CPU与CP342-5之间的数æ®äº¤æ¢æˆåŠŸè¿›è¡Œã€‚
93: DP从站,CP模æ¿ä»¥åŠCPU之间的数æ®é€šè®¯è¿‡ç¨‹æ˜¯å¦‚何进行的?
使用CP342-5模å—ï¼Œæ— è®ºè°ƒç”¨"DP_SEND" 功能å—还是"DP_RECV" 功能å—,您都ä¸èƒ½ç›´æŽ¥è¯»å†™æŸä¸ªPROFIBUS从站的I/Oæ•°æ®ã€‚CP342-5模å—有一个内部的Inputå’ŒOutputå˜å‚¨åŒºï¼Œç”¨æ¥å˜æ”¾æ‰€æœ‰PROFIBUS从站的的I/Oæ•°æ®ï¼Œè¾ƒæ–°ç‰ˆæœ¬çš„CP342-5模æ¿å†…部å˜å‚¨å™¨çš„Inputå’ŒOutput区分别为2160个å—节,Output区的数æ®å¾ªçŽ¯å†™åˆ°ä»Žç«™çš„输出通é“上,循环读出从站输入通é“的数值å˜æ”¾åœ¨Input区,整个过程是CP342-5与PROFIBUS从站之间自动å调完æˆçš„,您ä¸éœ€ç¼–写程åºã€‚您å¯ä»¥åœ¨PLC的用户程åºä¸è°ƒç”¨"DP_SEND"å’Œ"DP_RECV"功能å—,读写CP342-5这个内部的å˜å‚¨å™¨ã€‚
94:通过CP342-5,如何实现对PROFIBUS网络和站点的诊æ–功能?
用功能å—"DP_DIAG" (FC 3) å¯ä»¥åœ¨ç¨‹åºä¸å¯¹cp模å—进行诊æ–和分æžï¼Œå¯ä»¥é€šè¿‡job类型如DP 诊æ–列表,诊æ–å•ä¸ªdp状æ€ï¼Œè¯»å–dp从站数æ®ï¼Œè¯»å–cp或cpuçš„æ“作模å¼ï¼Œè¯»å–从站状æ€ç‰ç‰ã€‚
95:为什么当CP342-5模å—作为PROFIBUS DP主站,而ET200(如IM151-1或IM153-2)作为从站时,CP342-5上的SFç‰ä¸åœé—ªçƒï¼Ÿ
当S7-300系统ä¸çš„CP342-5作为DP主站,下挂IM153-2 模å—时,IM153-2åªèƒ½ä½œä¸ºDP主站,而ä¸æ˜¯S7从站è¿è¡Œã€‚ å¯ä»¥é‡‡å–通过GSD文件将ET200从站组æ€è¿›ä½ 的系统。éšåŽIM153模å—å¯ä½œä¸ºDP æ ‡å‡†ä»Žç«™è¿è¡Œã€‚为æ¤ï¼Œæ‚¨å¿…须将GSD文件安装到硬件目录ä¸ï¼ˆé€šè¿‡èœå•åºåˆ—Tools > "Install new GSD file")。在更新了硬件目录åŽæ‚¨ä¼šåœ¨"PROFIBUS-DP > Additional Field Devices".ä¸å‘现DP从站。
96:在STEP7ä¸æ‰“å¼€ä¸€äº›å¯¹è±¡æ—¶å‡ºé”™æ˜¯ä»€ä¹ˆåŽŸå› ï¼Ÿ
有的时候您在打开æŸäº›é¡¹ç›®ä¸çš„对象时,STEP7会弹出报错窗å£ï¼Œé”™è¯¯ä¿¡æ¯ä¸º'*.dll'æ–‡ä»¶æ— æ³•è¢«è£…è½½ï¼Œä»£ç 是257:5,
错误信æ¯æ˜¯ä¸€ä¸ªæˆ–多个对象ä¸èƒ½è¢«æ˜¾ç¤ºï¼Œå‡ºçŽ°è¿™ç§é”™è¯¯çš„åŽŸå› æ˜¯æ‚¨æ²¡æœ‰å®‰è£…ä¸Žè¦æ‰“开对象相关的软件包。
97:如果想通过上ä½æˆ–触摸å±å¯¹PLCä¸S5TIME类型的å‚数进行设定,有什么方法?
1〠从上ä½æœºå†™æ•´åž‹æ•°INT或实数REAL到PLC,首先该数值需包å«ä»¥æ¯«ç§’为å•ä½çš„时间值,在写入PLCçš„æ•°æ®å˜å‚¨åŒºåŽï¼Œåˆ©ç”¨ITD(Integer to Double Integer)或RND(Real to Double Integer with Rounding Off)将该值转æ¢ä¸ºåŒæ•´å½¢ï¼Œç„¶åŽå°†è¯¥å€¼å†™åˆ°ç±»åž‹ä¸ºTIMEçš„å˜é‡é‡Œï¼Œåœ¨ç¨‹åºä¸è°ƒç”¨FC40,将TIME转æ¢æˆS5TIMEå³å¯ã€‚
2〠从上ä½æœºå†™WORD到PLC,首先该数值需包å«ä»¥æŸæ—¶åŸºä¸ºå•ä½çš„时间值,在写入PLCçš„æ•°æ®å˜å‚¨åŒºåŽï¼Œç”¨Word Logic下的WOR_W指令将该值与其时基相或,å†åˆ©ç”¨MOVE指令将得到的数值写入S5TIME类型的å˜é‡ä¸ã€‚
3〠如果使用WinCC作为上ä½è½¯ä»¶ï¼Œæˆ–上ä½è½¯ä»¶æ”¯æŒ32ä½å¸¦ç¬¦å·æµ®ç‚¹æ•°ï¼Œå¯ä»¥ä»Žä¸Šä½å†™32ä½å¸¦ç¬¦å·æµ®ç‚¹æ•°åˆ°PLCä¸å®šä¹‰ä¸ºTIMEçš„å˜é‡ï¼Œç„¶åŽåœ¨ç¨‹åºä¸è°ƒç”¨FC40,将TIME转æ¢æˆS5TIMEå³å¯ã€‚
98:STEP 7ä¸ç›¸å…³æ—¶é—´å¤„ç†å’Œè½¬æ¢çš„功能å—有哪些?
SFC 0 "SET_CLK" 设置CPU时钟SFC 1 "READ_CLK" 读出CPU时钟FC 3 "D_TOD_DT" 从DATE_AND_TIME ä¸å–出DATE。
FC 6 "DT_DATE" 从DATE_AND_TIME ä¸å–出the day of the week,å³æ˜ŸæœŸå‡ FC 7 "DT_DAY" 从DATE_AND_TIME ä¸å–出时间FC 8 "DT_TOD"
FC33用于S5TIME到TIME的转æ¢FC40用于TIME到S5TIME的转æ¢
99:如何实现带电拔出或æ’入模æ¿ï¼Œå³çƒæ’拔功能?
硬件è¦æ±‚:
使用普通的S7-300导轨和U型总线连接器是ä¸èƒ½å®žçŽ°çƒæ’拔功能的,您必须è´ä¹°æœ‰æºæ€»çº¿åº•æ¿ï¼Œæ‰èƒ½å®žçŽ°è¯¥åŠŸèƒ½ã€‚å¦å¤–,您在é…置时,必须使用MLFB 6ES7 153-1AA02-0XB0版本以上的接å£æ¨¡å—ï¼Œå› ä¸ºå®ƒæ”¯æŒDPå议的DPV1版本,而MLFB IM153-1AA00-0XB0模å—是ä¸æ”¯æŒè¯¥åŠŸèƒ½çš„。目å‰æ‚¨èƒ½å¤Ÿè´ä¹°åˆ°çš„IM153接å£æ¨¡å—都支æŒçƒæ’拔,åªæœ‰2-3年以å‰çš„IM153接å£æ¨¡å—ä¸æ”¯æŒçƒæ’拔。
软件è¦æ±‚:您必须在STEP7 5.1版本以上进行é…置;
如果您采用S7-400 CPU或S7-400 CP作为DP主站,那么您å¯ä»¥ç›´æŽ¥åœ¨IM153的属性窗å£çš„"Operating Parameters"æ ‡ç¾é¡µé‡Œé…ç½®çƒæ’拔功能。
1:在STEP7的硬件组æ€çª—å£çš„PROFIBUS DP目录ä¸é€‰æ‹©ç›¸åº”IM153模å—,å¯ä»¥çœ‹å‡ºè¯¥æ¨¡å—支æŒâ€œmodule exchange in oprationâ€ï¼ˆçƒæ’拔);
2:将IM153模å—拖到PROFIBUS总线上;
3:选择I/O模å—,æ’入到ET200M站的å„个槽ä½ä¸ï¼›
4:åŒå‡»ET200M站,打开属性窗å£ï¼Œé€‰ä¸â€œReplace modules during operation“(çƒæ’æ‹”)选项;
5:属性窗å£ä¸æ供了ET200Mç«™çƒæ’拔功能所需的有æºæ€»çº¿å¯¼è½¨çš„订货å·ï¼›
6:属性窗å£ä¸æ供了该型å·IM153,æ’入的I/O模å—对应使用的有æºæ€»çº¿åº•æ¿çš„订货å·ï¼›
除了以上的硬件组æ€ä¹‹å¤–,还è¦å‘S7-400ä¸ä¸‹è½½OB82ã€OB83ã€OB84ã€OB85ã€OB86ã€OB87ã€OB121ã€OB122ç‰ç»„织å—。当ET200M从站上进行模å—çš„çƒæ’拔时,ä¸æ–组织å—OB83 ,OB85,OB122被调用。
如果您采用S7-300 CPU 或CP 342-5作为DP主站,那么您åªèƒ½å¤Ÿé€šè¿‡å®‰è£…GSD文件的方å¼å°†IM153模å—组æ€æˆDP从站,并åŒå‡»IM153,打开它的属性窗å£ï¼Œè¿›è¡Œè®¾ç½®ã€‚å¦åˆ™æ‚¨åœ¨STEP7的硬件组æ€çª—å£ä¸ç›´æŽ¥å°†PROFIBUS DP目录ET200M文件夹下IM153模å—挂在PROFIBUS总线上。
100:我如何åšåˆ°å¯¹è‡ªå·±çš„程åºå—è¿›è¡ŒåŠ å¯†ä¿æŠ¤ï¼Ÿ
您能够通过STEP7软件的KNOW_HOW_PROTECT功能实现对您程åºä»£ç çš„åŠ å¯†ä¿æŠ¤ã€‚
如果您åŒå‡»é¼ æ ‡æ‰“å¼€ç»è¿‡åŠ 密的程åºå—时,您åªèƒ½çœ‹åˆ°è¯¥ç¨‹åºå—的接å£æ•°æ®ï¼ˆå³IN, OUT å’ŒIN/OUT ç‰ç±»åž‹çš„å‚数)和注释信æ¯ï¼Œè€Œç¨‹åºå—ä¸çš„代ç åŠä»£ç 的注释,临时/é™æ€å˜é‡æ˜¯ä¸èƒ½è¢«çœ‹åˆ°çš„。åŒæ—¶æ‚¨ä¹Ÿæ— æ³•å¯¹åŠ å¯†ä¿æŠ¤çš„程åºå—åšå‡ºä»»ä½•æ”¹åŠ¨ã€‚
如何实现程åºå—ä¿æŠ¤ï¼š
1.打开程åºç¼–辑窗å£LAD/FBD/STLï¼›
2.å°†è¦è¿›è¡ŒåŠ 密ä¿æŠ¤çš„程åºå—生æˆè½¬æ¢ä¸ºæºä»£ç 文件(通过选择èœå•File— ;Generate source 生æˆï¼‰ï¼›
3.在LAD/FBD/STL 窗å£ä¸å…³é—您的程åºå—,并在SIMATIC
Manager项目管ç†çª—å£çš„source文件夹ä¸æ‰“开上一æ¥æ‰€ç”Ÿæˆçš„source文件;
4.在程åºå—的声明部分,TITLE行下é¢çš„一行ä¸è¾“å…¥â€KNOW_HOW_PROTECT
CAT-M Personal GPS Trackers,Small size GPS trackers,GPS trackers with panic button,mini waterproof personal GPS tracker
eSky wireless Inc , https://www.eskygpsiot.com